Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors.
نویسندگان
چکیده
Kainate receptors show a particular affinity for a variety of natural source compounds, including dysiherbaine (DH), a potent agonist derived from the marine sponge Dysidea herbacea. In this study, we characterized the pharmacological activity and structural basis for subunit selectivity of neodysiherbaine (neoDH) and MSVIII-19, which are natural and synthetic analogs of DH, respectively. NeoDH and MSVIII-19 differ from DH in the composition of two functional groups that confer specificity and selectivity for ionotropic glutamate receptors. In radioligand binding assays, neoDH displayed a 15- to 25-fold lower affinity relative to that of DH for glutamate receptor (GluR)5 and GluR6 kainate receptor subunits but a 7-fold higher affinity for kainate (KA)2 subunits, whereas MSVIII-19 displaced [(3)H]kainate only from GluR5 subunits but not GluR6 or KA2 subunits. NeoDH was an agonist for kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in patch-clamp recordings; in contrast, MSVIII-19 acted as a potent antagonist for homomeric GluR5 receptor currents with weaker activity on other kainate and AMPA receptors. Neither neoDH nor MSVIII-19 activated group I metabotropic GluRs. Homology modeling suggests that two critical amino acids confer the high degree of selectivity between the dysiherbaine analogs and the GluR5 and KA2 subunits. In summary, these data describe the pharmacological activity of two new compounds, one of which is a selective GluR5 receptor antagonist that will be of use for understanding native receptor function and designing more selective ligands for kainate receptors.
منابع مشابه
Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea.
Dysiherbaine (DH) is a marine sponge-derived amino acid that causes seizures upon injection into mice. In this report we investigate the behavioral effects and characterize the pharmacological activity of DH. DH induced convulsive behaviors in mice with ED(50) values of 13 pmol/mouse, i.c.v. and 0.97 mg/kg, i.p. In rat brain synaptic membranes DH displaced binding of [3H]kainic acid (KA) and [3...
متن کاملBerberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats
Objective(s): K+ channel blocker 4-aminopyridine (4-AP) stimulates the release of glutamate from nerve terminals and induces seizures. Berberine as a potential herbal drug exerts several pharmacological actions on the central nervous system including anxiolytic, anticonvulsant, and neuroprotective properties. The present study aimed to investigate the effect of berberine on seizure onset and ti...
متن کاملSynthesis and pharmacological activity of O-(5-isoxazolyl)-L-serine.
A novel isoxazole derivative, O-(5-isoxazolyl)-L-serine (OIS, 1), was synthesized by a Mitsunobu reaction of isoxazolin-5-one (4) with N-Boc-L-serine tert-butyl ester (5) and subsequent deprotection of the coupling product. Its structure was elucidated by spectroscopic analyses. The pharmacological activity of 1 was also examined with cloned glutamate receptors and transporters using a Xenopus ...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 314 3 شماره
صفحات -
تاریخ انتشار 2005